A three-dimensional model of $SL(2, \mathbb{R})$ and the hyperbolic pattern of $SL(2, \mathbb{Z})$

Yoichi Maeda maeda@tokai-u.jp Department of Mathematics, School of Science Tokai University Kitakaname 4-1-1, Hiratsuka, Kanagawa, 259-1292 Japan

Abstract

The special linear group $SL(2,\mathbb{R})$, the group of 2×2 real matrices with determinant one, is one of the most important and fundamental mathematical objects not only in mathematics but also in physics. In this paper, we propose a three-dimensional model of $SL(2,\mathbb{R})$ in \mathbb{R}^3 , which is realized by embedding $SL(2,\mathbb{R})$ into the unit 3-sphere. In this model, the set of symmetric matrices of $SL(2,\mathbb{Z})$ forms a hyperbolic pattern on the unit disk, like the islands floating on the sea named $SL(2,\mathbb{R})$. The structure of this hyperbolic pattern is described in the upper half-plane H. The upper half-plane H also enables us to generate symmetric matrices of $SL(2,\mathbb{R})$ with three circles. Furthermore, the well-known fact $H = SL(2,\mathbb{R})/SO(2)$ is visualized as S^1 fibers of Hopf fibration in the unit 3-sphere. With this three-dimensional model in \mathbb{R}^3 , we can have a concrete image of $SL(2,\mathbb{R})$ and its noncommutative group structure. This kind of visualization might bring great benefits for the readers who have background not only in mathematics, but also in all areas of science.

1 Introduction

The purpose of this paper is to propose a three-dimensional model of $SL(2, \mathbb{R})$ in \mathbb{R}^3 . The special linear group $SL(2, \mathbb{R})$, the group of 2×2 real matrices with determinant one, is one of the most important and fundamental mathematical objects not only in mathematics (see, [7, 9, 10]) but also in physics (see, [1, 5]). Nevertheless, it is difficult for us to grasp the whole image of $SL(2, \mathbb{R})$ and its noncommutative group structure. The three-dimensional model of $SL(2, \mathbb{R})$ is realized by embedding $SL(2, \mathbb{R})$ into the unit 3-sphere. By the stereographic projection from the unit 3-sphere into \mathbb{R}^3 , we can visualize every element in $SL(2, \mathbb{R})$ as a point in \mathbb{R}^3 . In this three-dimensional model, the set of symmetric matrices of $SL(2, \mathbb{Z})$ forms a hyperbolic pattern on the unit disk as shown in Figure 1. This hyperbolic pattern is regarded as a visualization of the well-known fact $H = SL(2, \mathbb{R})/SO(2)$, where H is the hyperbolic plane and SO(2) is the special orthogonal group in dimension 2.

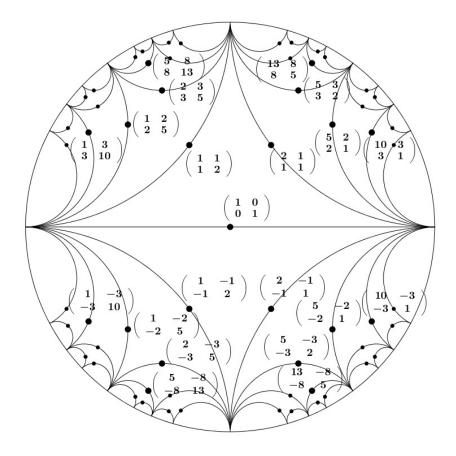


Figure 1: Hyperbolic pattern of $SL(2,\mathbb{Z})$.

In Section 2, we construct the three-dimensional model of $SL(2, \mathbb{R})$ in \mathbb{R}^3 . In Section 3, we focus on the hyperbolic pattern of the set of symmetric matrices of $SL(2, \mathbb{Z})$. Finally, the well-known fact $H = SL(2, \mathbb{R})/SO(2)$ is visualized as S^1 fibers of Hopf fibration (see, [3] pp.320–323, [4] pp. 298–305) in the model in Section 4.

2 Three-dimensional model of $SL(2, \mathbb{R})$

In this section, we propose a three-dimensional model of $SL(2,\mathbb{R})$. The real special linear group

$$SL(2,\mathbb{R}) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in GL(2,\mathbb{R}) \ \middle| \ ad-bc = 1 \right\}$$

is embedded into the three-dimensional unit sphere

$$S^{3} = \left\{ (u, v) \in \mathbb{C}^{2} \mid |u|^{2} + |v|^{2} = 1 \right\}.$$

To see this, let C_0 be a great circle in S^3 defined by

$$C_0 = \{(0, e^{i\theta}) \in S^3 \mid \theta \in [0, 2\pi)\}.$$

For a point $(u, v) \in S^3 \setminus C_0$, the real 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{|u|^2} \begin{pmatrix} \operatorname{Re}(u) + |u|\operatorname{Re}(v) & -\operatorname{Im}(u) + |u|\operatorname{Im}(v) \\ \operatorname{Im}(u) + |u|\operatorname{Im}(v) & \operatorname{Re}(u) - |u|\operatorname{Re}(v) \end{pmatrix}$$
(1)

is an element of $SL(2, \mathbb{R})$, because the determinant of A is equal to one. The embedding of $SL(2, \mathbb{R})$ into S^3 is given as the inverse map $\pi_0 : SL(2, \mathbb{R}) \to S^3 \setminus C_0$ determined by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (u, v) = \left(\frac{2}{r^2} \left\{ (a+d) + i(-b+c) \right\}, \frac{1}{r} \left\{ (a-d) + i(b+c) \right\} \right),$$
(2)

where $r = \sqrt{(a+d)^2 + (-b+c)^2} (= 2/|u|)$. The stareographic projection (see [3] p 260 [4]

The stereographic projection (see, [3] p.260, [4] p.74, [6] pp.74–77) of S^3 from the south pole (u, v) = (-1, 0) to the three-dimensional Euclidean space \mathbb{R}^3 such that

$$(X, Y, Z) = \frac{(\operatorname{Re}(v), \operatorname{Im}(v), \operatorname{Im}(u))}{1 + \operatorname{Re}(u)}$$

enables us to visualize almost every element in $SL(2, \mathbb{R})$ as a point in \mathbb{R}^3 . Only one invisible element $-I_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ is at infinity, because $-I_2$ corresponds to the south pole (u, v) = (-1, 0) in S^3 . In this way, we obtain the projection $\Pi_0 : SL(2, \mathbb{R}) \to \mathbb{R}^3 \cup \{\infty\}$ defined by

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\mapsto (X,Y,Z)=\frac{(\operatorname{Re}(v),\operatorname{Im}(v),\operatorname{Im}(u))}{1+\operatorname{Re}(u)}=\frac{(r(a-d),r(b+c),2(-b+c))}{r^2+2(a+d)}.$$

The typical subgroups: diag (e^t, e^{-t}) , SO(1, 1), and SO(2) are projected into the X, Y, Z-axes respectively (see, [8]):

$$\Pi_0 \left(\left(\begin{array}{cc} e^t & 0\\ 0 & e^{-t} \end{array} \right) \right) = \left(\tanh \frac{t}{2}, 0, 0 \right), \quad \Pi_0 \left(\left(\begin{array}{cc} \cosh t & \sinh t\\ \sinh t & \cosh t \end{array} \right) \right) = \left(0, \tanh \frac{t}{2}, 0 \right),$$
$$\Pi_0 \left(\left(\begin{array}{cc} \cos t & -\sin t\\ \sin t & \cos t \end{array} \right) \right) = \left(0, 0, \tan \frac{t}{2} \right).$$

In the next section, we focus on the set of symmetric matrices of $SL(2,\mathbb{R})$.

3 Hyperbolic pattern of symmetric matrices of $SL(2, \mathbb{Z})$

3.1 Hyperbolic pattern on the Poincaré disk

Let Sym^+ be the set of symmetric matrices with positive trace:

$$Sym^{+} = \left\{ \left(\begin{array}{cc} a & b \\ b & d \end{array} \right) \in SL(2, \mathbb{R}) \ \middle| \ a+d > 0 \right\}$$

Then, the value of r in the map Π_0 is equal to a + d. The range of the restriction of Π_0 to Sym^+ is the open unit disk in the XY-plane, because $X^2 + Y^2 = \frac{a+d-2}{a+d+2} < 1$ and Z = 0. Identifying \mathbb{R}^2 with \mathbb{C} , we obtain the map $\pi_1 : Sym^+ \to D = \{z \in \mathbb{C} \mid |z|^2 < 1\}$ such that

$$\left(\begin{array}{cc}a&b\\b&d\end{array}\right)\mapsto z=\pi_1\left(\left(\begin{array}{cc}a&b\\b&d\end{array}\right)\right)=\frac{a-d}{a+d+2}+i\frac{2b}{a+d+2}.$$

Figure 1 shows that the elements of $SL(2, \mathbb{Z})$ form a hyperbolic pattern on the unit disk. The identity matrix $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is at the origin. For any element A in Sym^+ , the sequence of matrices $\{\cdots, A^{-2}, A^{-1}, A^0(=I_2), A, A^2, \cdots\}$ is arranged in a line. This hyperbolic pattern is precisely described with the upper half-plane model of hyperbolic geometry.

3.2 Description of the hyperbolic pattern in the upper half-plane

Let φ be the transformation from the open unit disk D to the upper half-plane $H = \{w \in \mathbb{C} \mid \text{Im}(w) > 0\}$ defined by

$$z \mapsto w = \varphi(z) = i \frac{-z+1}{z+1}$$

With this transformation φ , we obtain the map $\pi_2 = \varphi \circ \pi_1$ from Sym^+ to H such that

$$\left(\begin{array}{cc}a&b\\b&d\end{array}\right)\mapsto w=\pi_2\left(\left(\begin{array}{cc}a&b\\b&d\end{array}\right)\right)=\frac{b}{a}+i\frac{1}{a}.$$

Figure 2 shows the hyperbolic pattern of $SL(2,\mathbb{Z})$ in H. This pattern is invariant under the next two

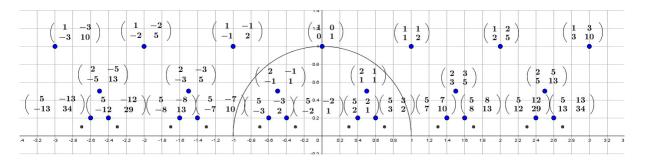


Figure 2: Upper half-plane model of Sym^+ .

transformations in *H*:

$$f(w) = -\frac{1}{w}, \quad g(w) = w + 1,$$

as shown in the following argument. Here, let us recall that these two transformations f and g are the generators of the modular group $PSL(2, \mathbb{Z})$ (see, [2] pp. 229–230):

$$PSL(2, \mathbb{Z}) = \langle f, g | f^2 = (fg)^3 = g^{\infty} = id \rangle$$

The hyperbolic pattern of $SL(2,\mathbb{Z})$ in Sym^+ is generated by the generator of $PSL(2,\mathbb{Z})$ by coincidence.

Theorem 1 The hyperbolic pattern of $SL(2,\mathbb{Z})$ in H is generated by two transformations

$$f(w) = -\frac{1}{w}, \quad g(w) = w + 1.$$

Proof. It is easy to check that for any $A \in Sym^+$,

$$\pi_2^{-1} \circ f \circ \pi_2(A) = A^{-1}, \quad \pi_2^{-1} \circ g \circ \pi_2(A) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

In particular, if $A \in SL(2,\mathbb{Z})$, then both $\pi_2^{-1} \circ f \circ \pi_2(A)$ and $\pi_2^{-1} \circ g \circ \pi_2(A)$ are in $SL(2,\mathbb{Z})$. Therefore, $SL(2,\mathbb{Z})$ is invariant under f and g.

The rest of the proof is to show that $SL(2,\mathbb{Z})$ is transitive in H; for any $A_0 \in SL(2,\mathbb{Z})$ in Sym^+ , we can take $\pi_2(A_0)$ to $i(=\pi_2(I_2))$ by finite composition of f and g. If the value a of A_0 is one, then, $\operatorname{Im}(\pi_2(A_0)) = 1$, hence, $\pi_2(A_0)$ is taken to $i(=\pi_2(I_2))$ by g^n for some $n \in \mathbb{Z}$. Otherwise, $\operatorname{Im}(\pi_2(A_0)) \leq \frac{1}{2}$. Note that if |w| < 1, then $\operatorname{Im}(f(w)) > \operatorname{Im}(w)$. We can choose $n_0 \in \mathbb{Z}$ such that $|g^{n_0}(\pi_2(A_0))| < 1$. By f, $\operatorname{Im}(f \circ g^{n_0}(\pi_2(A_0))) > \operatorname{Im}(g^{n_0}(\pi_2(A_0)))$, therefore, $\operatorname{Im}(f \circ g^{n_0}(\pi_2(A_0))) >$ $\operatorname{Im}(\pi_2(A_0))$. By repeating these procedures, we can eventually take $\pi_2(A_0)$ to $i(=\pi_2(I_2))$. This completes the proof.

In this way, it is natural that the metric on Sym^+ is determined as the hyperbolic metric (see, [2] p.127):

$$ds = \frac{2|dz|}{1 - |z|^2}$$

in the Poincaré unit disk $D = \{z \in \mathbb{C} \mid |z| < 1\}$ as shown in Figure 1.

Corollary 2 With the hyperbolic metric on Sym^+ , the minimal distance among the elements of $SL(2,\mathbb{Z})$ is $2\log \phi (\approx 0.9624)$, where ϕ is the golden ratio $\frac{1+\sqrt{5}}{2}$. For each element of $SL(2,\mathbb{Z})$, there are four closest elements of $SL(2,\mathbb{Z})$ which form a rectangle. The angle between two diagonals of the rectangle is $\arccos \frac{3}{5}$.

Proof. By Theorem 1, it is enough to consider the neighborhood of $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. By Figure 1, the four closest elements to I_2 are

$$A_{1} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, A_{2} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, A_{3} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}, A_{4} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}.$$

On the unit disk D, $\pi_1(A_1) = \frac{1+2i}{5}$ and $\pi_1(A_2) = \frac{-1+2i}{5}$. Direct calculation yields

$$d(I_2, A_1) = \int_0^{|\pi_1(A_1)|} \frac{2}{1 - t^2} dt = \left[\log\frac{1 + t}{1 - t}\right]_0^{\frac{\sqrt{5}}{5}} = \log\frac{(1 + \sqrt{5})^2}{4} = 2\log\phi.$$

Since the angle subtended by two diagonals A_1A_3 and A_2A_4 is equal to the angle $\angle A_1I_2A_2$ on the complex plane, it follows that

$$\cos \angle A_1 I_2 A_2 = \frac{-1+4}{5} = \frac{3}{5}$$

This completes the proof. \blacksquare

3.3 Construction of (a, b, d)-triple

At the end of this section, let us introduce an interesting method to make three numbers a, b, and d satisfying $ad - b^2 = 1$ without calculation but with construction of three circles in the upper halfplane. Let ψ be the transformation from D to the upper half-plane $H = \{w \in \mathbb{C} \mid \text{Im}(w) > 0\}$ defined by

$$z \mapsto w = \psi(z) = \frac{z+i}{iz+1}$$

With this transformation ψ , we obtain the map $\pi_3 = \psi \circ \pi_1$ from Sym^+ to H such that

$$\begin{pmatrix} a & b \\ b & d \end{pmatrix} \mapsto w = \pi_3 \left(\begin{pmatrix} a & b \\ b & d \end{pmatrix} \right) = \frac{a-d}{a+d-2b} + i\frac{2}{a+d-2b}$$

Figure 3 shows the hyperbolic pattern of $SL(2,\mathbb{Z})$ in H.

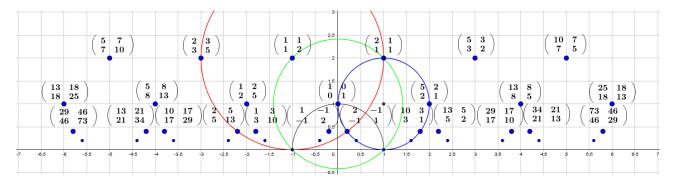


Figure 3: Another upper half-plane model of Sym^+ .

In this upper half-plane model, since $ad - b^2 = 1$,

$$|w|^2 = \frac{a+d+2b}{a+d-2b}$$

By using the equation above, it is easy to check the following equations:

$$|w - (-1 + ia)| = a, |w - (1 + id)| = d, |w - ib| = 1 + b^2.$$
 (3)

Equations (3) imply that for any point in this upper half-plane model, we can detect the corresponding element of Sym^+ . In other words, we can make any (a, b, d)-triple satisfying $ad - b^2 = 1$ by drawing three circles as follows;

'Construction of (a, b, d)-triple which holds $ad - b^2 = 1$ by three circles'

- 1. Take any point P on the upper half-plane.
- 2. Draw circle C_1 tangent to the x-axis at (-1, 0) and passing through P.
- 3. Draw circle C_2 tangent to the x-axis at (+1, 0) and passing through P.

- 4. Draw circle C_3 passing through (-1, 0), (+1, 0), and P.
- 5. Let a, d, b be the y-coordinate of the center of three circles C_1, C_2, C_3 , respectively. Then, the (a, b, d)-triple satisfies $ad b^2 = 1$.

For example, if P = (1, 2), then the three circles are given by

$$C_1: (x+1)^2 + (y-2)^2 = 2^2, \ C_2: (x-1)^2 + (y-1)^2 = 1^2, \ C_3: x^2 + (y-1)^2 = 2^2, \ C_3: x^2 + (y-1)^2 =$$

Hence, $P = (1,2) \in H$ corresponds to $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \in Sym^+$ as shown in Figure 3.

4 Hopf fibrations of $SL(2, \mathbb{R})$

At the end of this paper, let us go back to the map π_0 and the three-dimensional model in Section 2. For $K(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in SO(2)$, let us consider the left and right translations in $SL(2, \mathbb{R})$ defined by

$$K_L(\theta)(A) = K(\theta)A, \ K_R(\theta)(A) = AK(\theta)$$

for $A \in SL(2, \mathbb{R})$. Then, by Equations (1) and (2) in Section 2,

$$\pi_0 \circ K_L(\theta) \circ \pi_0^{-1}(u, v) = (e^{i\theta}u, e^{i\theta}v), \ \pi_0 \circ K_R(\theta) \circ \pi_0^{-1}(u, v) = (e^{i\theta}u, e^{-i\theta}v).$$

Therefore, the orbits under these translations are great circles in S^3 . The stereographic projection maps circles to circles, and hence, these two orbits are two different circles on the same torus as shown in Figures 4 and 5. These figures illustrate clearly the noncommutativity of the group structure

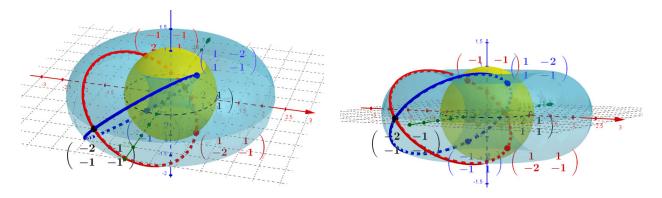


Figure 4: Left and right translations.

Figure 5: Side view of Figure 4.

of $SL(2, \mathbb{R})$. Furthermore, Figures 4 and 5 show that $SL(2, \mathbb{R})$ is the product of Sym^+ and SO(2), because every S^1 fiber of the left translation meets at one point in Sym^+ . Since Sym^+ may be regarded as the Poincaré disk with hyperbolic metric which isometric to the upper half-plane H, the well-known fact $H = SL(2, \mathbb{R})/SO(2)$ can now be visualized in the three-dimensional model.

5 Closing remarks

In this paper, we have proposed a three-dimensional model of $SL(2, \mathbb{R})$. The set of symmetric matrices corresponds to the hyperbolic plane H, which entails the well-known fact:

$$H = SL(2, \mathbb{R})/SO(2). \tag{4}$$

In general, Equation (4) is derived by the following algebraic approach: $SL(2, \mathbb{R})$ acts on the homogeneous space H as the Möbius transformation, and the point stabilizer of $i \in H$ is SO(2). In this sense, the three-dimensional model gives us another approach for Equation (4). Noncommutativity of the group structure of $SL(2, \mathbb{R})$ is also visualized. In this way, the three-dimensional model is useful for understanding the group $SL(2, \mathbb{R})$. The complete visualization of the group structure forms part of our future work.

References

- [1] V. Bargmann, *Irreducible unitary representations of the Lorentz group*, Annals of Mathematics Vol. 48, No. 3 (1947), pp. 568–640.
- [2] A. F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, 1983.
- [3] M. Berger, Geometry I, Springer-Verlag, 1987.
- [4] M. Berger, Geometry II, Springer-Verlag, 1987.
- [5] Harish-Chandra, *Plancherel formula for the 2 × 2 real unimodular group*, Proc. Natl. Acad. Sci. U.S.A., Vol. 38, No. 4 (1952), pp. 337–342.
- [6] G. Jennings, Modern geometry with applications, Springer-Verlag, 1994.
- [7] S. Lang, $SL_2(\mathbf{R})$, Springer-Verlag, 1985.
- [8] Y. Maeda, Active Learning with Dynamic Geometry Software, ICCSA 2017, Part IV, LNCS 10407 (2017), pp. 228–239.
- [9] E. Molnár, *The projective interpretation of the eight 3-dimensional homogenuouse geometries*, Beiträge, Algebra Geom. Vol. 38 (1997), pp. 261–288.
- [10] W. P. Thurston, *Three dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. Vol. 6, No. 3 (1982), pp. 357–381.