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Abstract

The special linear group SL(2,R), the group of 2 × 2 real matrices with determinant one,
is one of the most important and fundamental mathematical objects not only in mathematics but
also in physics. In this paper, we propose a three-dimensional model of SL(2,R) in R3, which
is realized by embedding SL(2,R) into the unit 3-sphere. In this model, the set of symmetric
matrices of SL(2,Z) forms a hyperbolic pattern on the unit disk, like the islands floating on the
sea named SL(2,R). The structure of this hyperbolic pattern is described in the upper half-plane
H . The upper half-plane H also enables us to generate symmetric matrices of SL(2,R) with
three circles. Furthermore, the well-known fact H = SL(2,R)/SO(2) is visualized as S1 fibers
of Hopf fibration in the unit 3-sphere. With this three-dimensional model in R3, we can have a
concrete image of SL(2,R) and its noncommutative group structure. This kind of visualization
might bring great benefits for the readers who have background not only in mathematics, but also
in all areas of science.

1 Introduction
The purpose of this paper is to propose a three-dimensional model of SL(2,R) in R3. The special
linear group SL(2,R), the group of 2 × 2 real matrices with determinant one, is one of the most
important and fundamental mathematical objects not only in mathematics (see, [7, 9, 10]) but also in
physics (see, [1, 5]). Nevertheless, it is difficult for us to grasp the whole image of SL(2,R) and its
noncommutative group structure. The three-dimensional model of SL(2,R) is realized by embedding
SL(2,R) into the unit 3-sphere. By the stereographic projection from the unit 3-sphere into R3, we
can visualize every element in SL(2,R) as a point in R3. In this three-dimensional model, the set
of symmetric matrices of SL(2,Z) forms a hyperbolic pattern on the unit disk as shown in Figure 1.
This hyperbolic pattern is regarded as a visualization of the well-known fact H = SL(2,R)/SO(2),
where H is the hyperbolic plane and SO(2) is the special orthogonal group in dimension 2.
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Figure 1: Hyperbolic pattern of SL(2,Z).

In Section 2, we construct the three-dimensional model of SL(2,R) in R3. In Section 3, we
focus on the hyperbolic pattern of the set of symmetric matrices of SL(2,Z). Finally, the well-known
fact H = SL(2,R)/SO(2) is visualized as S1 fibers of Hopf fibration (see, [3] pp.320–323, [4] pp.
298–305) in the model in Section 4.

2 Three-dimensional model of SL(2,R)
In this section, we propose a three-dimensional model of SL(2,R). The real special linear group

SL(2,R) =

{(
a b
c d

)
∈ GL(2,R)

∣∣∣∣ ad− bc = 1

}
is embedded into the three-dimensional unit sphere

S3 =
{

(u, v) ∈ C2
∣∣ |u|2 + |v|2 = 1

}
.

To see this, let C0 be a great circle in S3 defined by

C0 =
{

(0, eiθ) ∈ S3
∣∣ θ ∈ [0, 2π)

}
.
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For a point (u, v) ∈ S3\C0, the real 2× 2 matrix

A =

(
a b
c d

)
=

1

|u|2

(
Re(u) + |u|Re(v) − Im(u) + |u|Im(v)
Im(u) + |u|Im(v) Re(u)− |u|Re(v)

)
(1)

is an element of SL(2,R), because the determinant of A is equal to one. The embedding of SL(2,R)
into S3 is given as the inverse map π0 : SL(2,R)→ S3\C0 determined by(

a b
c d

)
7→ (u, v) =

(
2

r2
{(a+ d) + i(−b+ c)} , 1

r
{(a− d) + i(b+ c)}

)
, (2)

where r =
√

(a+ d)2 + (−b+ c)2 (= 2/|u|).
The stereographic projection (see, [3] p.260, [4] p.74, [6] pp.74–77) of S3 from the south pole (u, v) =
(−1, 0) to the three-dimensional Euclidean space R3 such that

(X, Y, Z) =
(Re(v), Im(v), Im(u))

1 + Re(u)

enables us to visualize almost every element in SL(2,R) as a point in R3. Only one invisible element

−I2 =

(
−1 0
0 −1

)
is at infinity, because −I2 corresponds to the south pole (u, v) = (−1, 0) in S3.

In this way, we obtain the projection Π0 : SL(2,R)→ R3 ∪ {∞} defined by(
a b
c d

)
7→ (X, Y, Z) =

(Re(v), Im(v), Im(u))

1 + Re(u)
=

(r(a− d), r(b+ c), 2(−b+ c))

r2 + 2(a+ d)
.

The typical subgroups: diag(et, e−t), SO(1, 1), and SO(2) are projected into theX, Y, Z-axes respec-
tively (see, [8]):

Π0

((
et 0
0 e−t

))
=

(
tanh

t

2
, 0, 0

)
, Π0

((
cosh t sinh t
sinh t cosh t

))
=

(
0, tanh

t

2
, 0

)
,

Π0

((
cos t − sin t
sin t cos t

))
=

(
0, 0, tan

t

2

)
.

In the next section, we focus on the set of symmetric matrices of SL(2,R).

3 Hyperbolic pattern of symmetric matrices of SL(2,Z)

3.1 Hyperbolic pattern on the Poincaré disk
Let Sym+ be the set of symmetric matrices with positive trace:

Sym+ =

{(
a b
b d

)
∈ SL(2,R)

∣∣∣∣ a+ d > 0

}
.
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Then, the value of r in the map Π0 is equal to a + d. The range of the restriction of Π0 to Sym+ is

the open unit disk in the XY -plane, because X2 + Y 2 =
a+ d− 2

a+ d+ 2
< 1 and Z = 0. Identifying R2

with C, we obtain the map π1 : Sym+ → D = {z ∈ C | |z|2 < 1} such that(
a b
b d

)
7→ z = π1

((
a b
b d

))
=

a− d
a+ d+ 2

+ i
2b

a+ d+ 2
.

Figure 1 shows that the elements of SL(2,Z) form a hyperbolic pattern on the unit disk. The identity

matrix I2 =

(
1 0
0 1

)
is at the origin. For any element A in Sym+, the sequence of matrices

{· · · , A−2, A−1, A0(= I2), A,A
2, · · · } is arranged in a line. This hyperbolic pattern is precisely

described with the upper half-plane model of hyperbolic geometry.

3.2 Description of the hyperbolic pattern in the upper half-plane
Letϕ be the transformation from the open unit diskD to the upper half-planeH = {w ∈ C | Im(w) > 0}
defined by

z 7→ w = ϕ(z) = i
−z + 1

z + 1
.

With this transformation ϕ, we obtain the map π2 = ϕ ◦ π1 from Sym+ to H such that(
a b
b d

)
7→ w = π2

((
a b
b d

))
=
b

a
+ i

1

a
.

Figure 2 shows the hyperbolic pattern of SL(2,Z) in H . This pattern is invariant under the next two

Figure 2: Upper half-plane model of Sym+.

transformations in H:
f(w) = − 1

w
, g(w) = w + 1,

as shown in the following argument. Here, let us recall that these two transformations f and g are the
generators of the modular group PSL(2,Z) (see, [2] pp. 229–230):

PSL(2,Z) = < f, g | f 2 = (fg)3 = g∞ = id > .

The hyperbolic pattern of SL(2,Z) in Sym+ is generated by the generator of PSL(2,Z) by coinci-
dence.
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Theorem 1 The hyperbolic pattern of SL(2,Z) in H is generated by two transformations

f(w) = − 1

w
, g(w) = w + 1.

Proof. It is easy to check that for any A ∈ Sym+,

π−12 ◦ f ◦ π2(A) = A−1, π−12 ◦ g ◦ π2(A) =

(
1 0
1 1

)
A

(
1 1
0 1

)
.

In particular, if A ∈ SL(2,Z), then both π−12 ◦ f ◦ π2(A) and π−12 ◦ g ◦ π2(A) are in SL(2,Z). There-
fore, SL(2,Z) is invariant under f and g.
The rest of the proof is to show that SL(2,Z) is transitive in H; for any A0 ∈ SL(2,Z) in Sym+,
we can take π2(A0) to i(= π2(I2)) by finite composition of f and g. If the value a of A0 is one,
then, Im(π2(A0)) = 1, hence, π2(A0) is taken to i(= π2(I2)) by gn for some n ∈ Z. Otherwise,
Im(π2(A0)) ≤ 1

2
. Note that if |w| < 1, then Im(f(w)) > Im(w). We can choose n0 ∈ Z such that

|gn0(π2(A0))| < 1. By f , Im(f ◦gn0(π2(A0))) > Im(gn0(π2(A0))), therefore, Im(f ◦gn0(π2(A0))) >
Im(π2(A0)). By repeating these procedures, we can eventually take π2(A0) to i(= π2(I2)). This
completes the proof.

In this way, it is natural that the metric on Sym+ is determined as the hyperbolic metric (see, [2]
p.127):

ds =
2|dz|

1− |z|2

in the Poincaré unit disk D = {z ∈ C | |z| < 1} as shown in Figure 1.

Corollary 2 With the hyperbolic metric on Sym+, the minimal distance among the elements of
SL(2,Z) is 2 log φ(≈ 0.9624), where φ is the golden ratio 1+

√
5

2
. For each element of SL(2,Z),

there are four closest elements of SL(2,Z) which form a rectangle. The angle between two diagonals
of the rectangle is arccos 3

5
.

Proof. By Theorem 1, it is enough to consider the neighborhood of I2 =

(
1 0
0 1

)
. By Figure 1, the

four closest elements to I2 are

A1 =

(
2 1
1 1

)
, A2 =

(
1 1
1 2

)
, A3 =

(
1 −1
−1 2

)
, A4 =

(
2 −1
−1 1

)
.

On the unit disk D, π1(A1) =
1 + 2i

5
and π1(A2) =

−1 + 2i

5
. Direct calculation yields

d(I2, A1) =

∫ |π1(A1)|

0

2

1− t2
dt =

[
log

1 + t

1− t

]√
5

5

0

= log
(1 +

√
5)2

4
= 2 log φ.

Since the angle subtended by two diagonals A1A3 and A2A4 is equal to the angle ∠A1I2A2 on the
complex plane, it follows that

cos∠A1I2A2 =
−1 + 4

5
=

3

5
.

This completes the proof.
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3.3 Construction of (a, b, d)-triple
At the end of this section, let us introduce an interesting method to make three numbers a, b, and d
satisfying ad − b2 = 1 without calculation but with construction of three circles in the upper half-
plane. Let ψ be the transformation fromD to the upper half-planeH = {w ∈ C | Im(w) > 0} defined
by

z 7→ w = ψ(z) =
z + i

iz + 1
.

With this transformation ψ, we obtain the map π3 = ψ ◦ π1 from Sym+ to H such that(
a b
b d

)
7→ w = π3

((
a b
b d

))
=

a− d
a+ d− 2b

+ i
2

a+ d− 2b
.

Figure 3 shows the hyperbolic pattern of SL(2,Z) in H .

Figure 3: Another upper half-plane model of Sym+.

In this upper half-plane model, since ad− b2 = 1,

|w|2 =
a+ d+ 2b

a+ d− 2b
.

By using the equation above, it is easy to check the following equations:

|w − (−1 + ia)| = a, |w − (1 + id)| = d, |w − ib| = 1 + b2. (3)

Equations (3) imply that for any point in this upper half-plane model, we can detect the corresponding
element of Sym+. In other words, we can make any (a, b, d)-triple satisfying ad− b2 = 1 by drawing
three circles as follows;

‘Construction of (a, b, d)-triple which holds ad− b2 = 1 by three circles’

1. Take any point P on the upper half-plane.

2. Draw circle C1 tangent to the x-axis at (−1, 0) and passing through P .

3. Draw circle C2 tangent to the x-axis at (+1, 0) and passing through P .
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4. Draw circle C3 passing through (−1, 0), (+1, 0), and P .

5. Let a, d, b be the y-coordinate of the center of three circles C1, C2, C3, respectively. Then, the
(a, b, d)-triple satisfies ad− b2 = 1.

For example, if P = (1, 2), then the three circles are given by

C1 : (x+ 1)2 + (y − 2)2 = 22, C2 : (x− 1)2 + (y − 1)2 = 12, C3 : x2 + (y − 1)2 = 2.

Hence, P = (1, 2) ∈ H corresponds to
(

2 1
1 1

)
∈ Sym+ as shown in Figure 3.

4 Hopf fibrations of SL(2,R)
At the end of this paper, let us go back to the map π0 and the three-dimensional model in Section 2.

For K(θ) =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2), let us consider the left and right translations in SL(2,R)

defined by
KL(θ)(A) = K(θ)A, KR(θ)(A) = AK(θ)

for A ∈ SL(2,R). Then, by Equations (1) and (2) in Section 2,

π0 ◦KL(θ) ◦ π−10 (u, v) = (eiθu, eiθv), π0 ◦KR(θ) ◦ π−10 (u, v) = (eiθu, e−iθv).

Therefore, the orbits under these translations are great circles in S3. The stereographic projection
maps circles to circles, and hence, these two orbits are two different circles on the same torus as
shown in Figures 4 and 5. These figures illustrate clearly the noncommutativity of the group structure

Figure 4: Left and right translations. Figure 5: Side view of Figure 4.

of SL(2,R). Furthermore, Figures 4 and 5 show that SL(2,R) is the product of Sym+ and SO(2),
because every S1 fiber of the left translation meets at one point in Sym+. Since Sym+ may be
regarded as the Poincaré disk with hyperbolic metric which isometric to the upper half-plane H , the
well-known fact H = SL(2,R)/SO(2) can now be visualized in the three-dimensional model.
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5 Closing remarks
In this paper, we have proposed a three-dimensional model of SL(2,R). The set of symmetric matri-
ces corresponds to the hyperbolic plane H , which entails the well-known fact:

H = SL(2,R)/SO(2). (4)

In general, Equation (4) is derived by the following algebraic approach: SL(2,R) acts on the homo-
geneous space H as the Möbius transformation, and the point stabilizer of i ∈ H is SO(2). In this
sense, the three-dimensional model gives us another approach for Equation (4). Noncommutativity of
the group structure of SL(2,R) is also visualized. In this way, the three-dimensional model is useful
for understanding the group SL(2,R). The complete visualization of the group structure forms part
of our future work.
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