A three-dimensional model of $S L(2, \mathbb{R})$ and the hyperbolic pattern of $S L(2, \mathbb{Z})$

Yoichi Maeda
maeda@tokai-u.jp
Department of Mathematics, School of Science
Tokai University
Kitakaname 4-1-1, Hiratsuka, Kanagawa, 259-1292
Japan

Abstract

The special linear group $S L(2, \mathbb{R})$, the group of 2×2 real matrices with determinant one, is one of the most important and fundamental mathematical objects not only in mathematics but also in physics. In this paper, we propose a three-dimensional model of $S L(2, \mathbb{R})$ in \mathbb{R}^{3}, which is realized by embedding $S L(2, \mathbb{R})$ into the unit 3 -sphere. In this model, the set of symmetric matrices of $S L(2, \mathbb{Z})$ forms a hyperbolic pattern on the unit disk, like the islands floating on the sea named $S L(2, \mathbb{R})$. The structure of this hyperbolic pattern is described in the upper half-plane H. The upper half-plane H also enables us to generate symmetric matrices of $\operatorname{SL}(2, \mathbb{R})$ with three circles. Furthermore, the well-known fact $H=S L(2, \mathbb{R}) / S O(2)$ is visualized as S^{1} fibers of Hopf fibration in the unit 3 -sphere. With this three-dimensional model in \mathbb{R}^{3}, we can have a concrete image of $S L(2, \mathbb{R})$ and its noncommutative group structure. This kind of visualization might bring great benefits for the readers who have background not only in mathematics, but also in all areas of science.

1 Introduction

The purpose of this paper is to propose a three-dimensional model of $S L(2, \mathbb{R})$ in \mathbb{R}^{3}. The special linear group $S L(2, \mathbb{R})$, the group of 2×2 real matrices with determinant one, is one of the most important and fundamental mathematical objects not only in mathematics (see, [7, 9, 10]) but also in physics (see, $[1,5]$). Nevertheless, it is difficult for us to grasp the whole image of $S L(2, \mathbb{R})$ and its noncommutative group structure. The three-dimensional model of $S L(2, \mathbb{R})$ is realized by embedding $S L(2, \mathbb{R})$ into the unit 3 -sphere. By the stereographic projection from the unit 3 -sphere into \mathbb{R}^{3}, we can visualize every element in $S L(2, \mathbb{R})$ as a point in \mathbb{R}^{3}. In this three-dimensional model, the set of symmetric matrices of $S L(2, \mathbb{Z})$ forms a hyperbolic pattern on the unit disk as shown in Figure 1. This hyperbolic pattern is regarded as a visualization of the well-known fact $H=S L(2, \mathbb{R}) / S O(2)$, where H is the hyperbolic plane and $S O(2)$ is the special orthogonal group in dimension 2.

Figure 1: Hyperbolic pattern of $S L(2, \mathbb{Z})$.

In Section 2, we construct the three-dimensional model of $S L(2, \mathbb{R})$ in \mathbb{R}^{3}. In Section 3, we focus on the hyperbolic pattern of the set of symmetric matrices of $S L(2, \mathbb{Z})$. Finally, the well-known fact $H=S L(2, \mathbb{R}) / S O(2)$ is visualized as S^{1} fibers of Hopf fibration (see, [3] pp.320-323, [4] pp. 298-305) in the model in Section 4.

2 Three-dimensional model of $S L(2, \mathbb{R})$

In this section, we propose a three-dimensional model of $S L(2, \mathbb{R})$. The real special linear group

$$
S L(2, \mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L(2, \mathbb{R}) \right\rvert\, a d-b c=1\right\}
$$

is embedded into the three-dimensional unit sphere

$$
S^{3}=\left\{\left.(u, v) \in \mathbb{C}^{2}| | u\right|^{2}+|v|^{2}=1\right\} .
$$

To see this, let C_{0} be a great circle in S^{3} defined by

$$
C_{0}=\left\{\left(0, e^{i \theta}\right) \in S^{3} \mid \theta \in[0,2 \pi)\right\} .
$$

For a point $(u, v) \in S^{3} \backslash C_{0}$, the real 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right)=\frac{1}{|u|^{2}}\left(\begin{array}{rr}
\operatorname{Re}(u)+|u| \operatorname{Re}(v) & -\operatorname{Im}(u)+|u| \operatorname{Im}(v) \\
\operatorname{Im}(u)+|u| \operatorname{Im}(v) & \operatorname{Re}(u)-|u| \operatorname{Re}(v)
\end{array}\right)
$$

is an element of $S L(2, \mathbb{R})$, because the determinant of A is equal to one. The embedding of $S L(2, \mathbb{R})$ into S^{3} is given as the inverse map $\pi_{0}: S L(2, \mathbb{R}) \rightarrow S^{3} \backslash C_{0}$ determined by

$$
\left(\begin{array}{ll}
a & b \tag{2}\\
c & d
\end{array}\right) \mapsto(u, v)=\left(\frac{2}{r^{2}}\{(a+d)+i(-b+c)\}, \frac{1}{r}\{(a-d)+i(b+c)\}\right),
$$

where $r=\sqrt{(a+d)^{2}+(-b+c)^{2}}(=2 /|u|)$.
The stereographic projection (see, [3] p.260, [4] p.74, [6] pp.74-77) of S^{3} from the south pole (u, v) $=$ $(-1,0)$ to the three-dimensional Euclidean space \mathbb{R}^{3} such that

$$
(X, Y, Z)=\frac{(\operatorname{Re}(v), \operatorname{Im}(v), \operatorname{Im}(u))}{1+\operatorname{Re}(u)}
$$

enables us to visualize almost every element in $S L(2, \mathbb{R})$ as a point in \mathbb{R}^{3}. Only one invisible element $-I_{2}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ is at infinity, because $-I_{2}$ corresponds to the south pole $(u, v)=(-1,0)$ in S^{3}. In this way, we obtain the projection $\Pi_{0}: S L(2, \mathbb{R}) \rightarrow \mathbb{R}^{3} \cup\{\infty\}$ defined by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto(X, Y, Z)=\frac{(\operatorname{Re}(v), \operatorname{Im}(v), \operatorname{Im}(u))}{1+\operatorname{Re}(u)}=\frac{(r(a-d), r(b+c), 2(-b+c))}{r^{2}+2(a+d)}
$$

The typical subgroups: $\operatorname{diag}\left(e^{t}, e^{-t}\right), S O(1,1)$, and $S O(2)$ are projected into the X, Y, Z-axes respectively (see, [8]):

$$
\begin{aligned}
& \Pi_{0}\left(\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right)\right)=\left(\tanh \frac{t}{2}, 0,0\right), \Pi_{0}\left(\left(\begin{array}{cc}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)\right)=\left(0, \tanh \frac{t}{2}, 0\right), \\
& \Pi_{0}\left(\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)\right)=\left(0,0, \tan \frac{t}{2}\right) .
\end{aligned}
$$

In the next section, we focus on the set of symmetric matrices of $S L(2, \mathbb{R})$.

3 Hyperbolic pattern of symmetric matrices of $S L(2, \mathbb{Z})$

3.1 Hyperbolic pattern on the Poincaré disk

Let $S y m^{+}$be the set of symmetric matrices with positive trace:

$$
\text { Sym }^{+}=\left\{\left.\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right) \in S L(2, \mathbb{R}) \right\rvert\, a+d>0\right\} .
$$

Then, the value of r in the map Π_{0} is equal to $a+d$. The range of the restriction of Π_{0} to Sym ${ }^{+}$is the open unit disk in the $X Y$-plane, because $X^{2}+Y^{2}=\frac{a+d-2}{a+d+2}<1$ and $Z=0$. Identifying \mathbb{R}^{2} with \mathbb{C}, we obtain the map $\pi_{1}:$ Sym $^{+} \rightarrow D=\left\{\left.z \in \mathbb{C}| | z\right|^{2}<1\right\}$ such that

$$
\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right) \mapsto z=\pi_{1}\left(\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right)\right)=\frac{a-d}{a+d+2}+i \frac{2 b}{a+d+2} .
$$

Figure 1 shows that the elements of $S L(2, \mathbb{Z})$ form a hyperbolic pattern on the unit disk. The identity matrix $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is at the origin. For any element A in $S y m^{+}$, the sequence of matrices $\left\{\cdots, A^{-2}, A^{-1}, A^{0}\left(=I_{2}\right), A, A^{2}, \cdots\right\}$ is arranged in a line. This hyperbolic pattern is precisely described with the upper half-plane model of hyperbolic geometry.

3.2 Description of the hyperbolic pattern in the upper half-plane

Let φ be the transformation from the open unit disk D to the upper half-plane $H=\{w \in \mathbb{C} \mid \operatorname{Im}(w)>0\}$ defined by

$$
z \mapsto w=\varphi(z)=i \frac{-z+1}{z+1} .
$$

With this transformation φ, we obtain the map $\pi_{2}=\varphi \circ \pi_{1}$ from Sym ${ }^{+}$to H such that

$$
\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right) \mapsto w=\pi_{2}\left(\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right)\right)=\frac{b}{a}+i \frac{1}{a} .
$$

Figure 2 shows the hyperbolic pattern of $S L(2, \mathbb{Z})$ in H. This pattern is invariant under the next two

Figure 2: Upper half-plane model of Sym^{+}.
transformations in H :

$$
f(w)=-\frac{1}{w}, \quad g(w)=w+1
$$

as shown in the following argument. Here, let us recall that these two transformations f and g are the generators of the modular group $\operatorname{PSL}(2, \mathbb{Z})$ (see, [2] pp. 229-230):

$$
\operatorname{PSL}(2, \mathbb{Z})=<f, g \mid f^{2}=(f g)^{3}=g^{\infty}=i d>
$$

The hyperbolic pattern of $S L(2, \mathbb{Z})$ in $S y m^{+}$is generated by the generator of $\operatorname{PSL}(2, \mathbb{Z})$ by coincidence.

Theorem 1 The hyperbolic pattern of $S L(2, \mathbb{Z})$ in H is generated by two transformations

$$
f(w)=-\frac{1}{w}, \quad g(w)=w+1
$$

Proof. It is easy to check that for any $A \in S y m^{+}$,

$$
\pi_{2}^{-1} \circ f \circ \pi_{2}(A)=A^{-1}, \quad \pi_{2}^{-1} \circ g \circ \pi_{2}(A)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) A\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

In particular, if $A \in S L(2, \mathbb{Z})$, then both $\pi_{2}^{-1} \circ f \circ \pi_{2}(A)$ and $\pi_{2}^{-1} \circ g \circ \pi_{2}(A)$ are in $S L(2, \mathbb{Z})$. Therefore, $S L(2, \mathbb{Z})$ is invariant under f and g.
The rest of the proof is to show that $S L(2, \mathbb{Z})$ is transitive in H; for any $A_{0} \in S L(2, \mathbb{Z})$ in $S_{y m}{ }^{+}$, we can take $\pi_{2}\left(A_{0}\right)$ to $i\left(=\pi_{2}\left(I_{2}\right)\right)$ by finite composition of f and g. If the value a of A_{0} is one, then, $\operatorname{Im}\left(\pi_{2}\left(A_{0}\right)\right)=1$, hence, $\pi_{2}\left(A_{0}\right)$ is taken to $i\left(=\pi_{2}\left(I_{2}\right)\right)$ by g^{n} for some $n \in \mathbb{Z}$. Otherwise, $\operatorname{Im}\left(\pi_{2}\left(A_{0}\right)\right) \leq \frac{1}{2}$. Note that if $|w|<1$, then $\operatorname{Im}(f(w))>\operatorname{Im}(w)$. We can choose $n_{0} \in \mathbb{Z}$ such that $\left|g^{n_{0}}\left(\pi_{2}\left(A_{0}\right)\right)\right|<1$. By $f, \operatorname{Im}\left(f \circ g^{n_{0}}\left(\pi_{2}\left(A_{0}\right)\right)\right)>\operatorname{Im}\left(g^{n_{0}}\left(\pi_{2}\left(A_{0}\right)\right)\right)$, therefore, $\operatorname{Im}\left(f \circ g^{n_{0}}\left(\pi_{2}\left(A_{0}\right)\right)\right)>$ $\operatorname{Im}\left(\pi_{2}\left(A_{0}\right)\right)$. By repeating these procedures, we can eventually take $\pi_{2}\left(A_{0}\right)$ to $i\left(=\pi_{2}\left(I_{2}\right)\right)$. This completes the proof.

In this way, it is natural that the metric on Sym^{+}is determined as the hyperbolic metric (see, [2] p.127):

$$
d s=\frac{2|d z|}{1-|z|^{2}}
$$

in the Poincaré unit disk $D=\{z \in \mathbb{C}| | z \mid<1\}$ as shown in Figure 1.
Corollary 2 With the hyperbolic metric on Sym ${ }^{+}$, the minimal distance among the elements of $S L(2, \mathbb{Z})$ is $2 \log \phi(\approx 0.9624)$, where ϕ is the golden ratio $\frac{1+\sqrt{5}}{2}$. For each element of $S L(2, \mathbb{Z})$, there are four closest elements of $S L(2, \mathbb{Z})$ which form a rectangle. The angle between two diagonals of the rectangle is $\arccos \frac{3}{5}$.
Proof. By Theorem 1, it is enough to consider the neighborhood of $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. By Figure 1, the four closest elements to I_{2} are

$$
A_{1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right), A_{2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), A_{3}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right), A_{4}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right) .
$$

On the unit disk $D, \pi_{1}\left(A_{1}\right)=\frac{1+2 i}{5}$ and $\pi_{1}\left(A_{2}\right)=\frac{-1+2 i}{5}$. Direct calculation yields

$$
d\left(I_{2}, A_{1}\right)=\int_{0}^{\left|\pi_{1}\left(A_{1}\right)\right|} \frac{2}{1-t^{2}} d t=\left[\log \frac{1+t}{1-t}\right]_{0}^{\frac{\sqrt{5}}{5}}=\log \frac{(1+\sqrt{5})^{2}}{4}=2 \log \phi
$$

Since the angle subtended by two diagonals $A_{1} A_{3}$ and $A_{2} A_{4}$ is equal to the angle $\angle A_{1} I_{2} A_{2}$ on the complex plane, it follows that

$$
\cos \angle A_{1} I_{2} A_{2}=\frac{-1+4}{5}=\frac{3}{5} .
$$

This completes the proof.

3.3 Construction of (a, b, d)-triple

At the end of this section, let us introduce an interesting method to make three numbers a, b, and d satisfying $a d-b^{2}=1$ without calculation but with construction of three circles in the upper halfplane. Let ψ be the transformation from D to the upper half-plane $H=\{w \in \mathbb{C} \mid \operatorname{Im}(w)>0\}$ defined by

$$
z \mapsto w=\psi(z)=\frac{z+i}{i z+1}
$$

With this transformation ψ, we obtain the map $\pi_{3}=\psi \circ \pi_{1}$ from Sym ${ }^{+}$to H such that

$$
\left(\begin{array}{cc}
a & b \\
b & d
\end{array}\right) \mapsto w=\pi_{3}\left(\left(\begin{array}{cc}
a & b \\
b & d
\end{array}\right)\right)=\frac{a-d}{a+d-2 b}+i \frac{2}{a+d-2 b} .
$$

Figure 3 shows the hyperbolic pattern of $S L(2, \mathbb{Z})$ in H.

Figure 3: Another upper half-plane model of Sym^{+}.

In this upper half-plane model, since $a d-b^{2}=1$,

$$
|w|^{2}=\frac{a+d+2 b}{a+d-2 b} .
$$

By using the equation above, it is easy to check the following equations:

$$
\begin{equation*}
|w-(-1+i a)|=a,|w-(1+i d)|=d, \quad|w-i b|=1+b^{2} . \tag{3}
\end{equation*}
$$

Equations (3) imply that for any point in this upper half-plane model, we can detect the corresponding element of $S y m^{+}$. In other words, we can make any (a, b, d)-triple satisfying $a d-b^{2}=1$ by drawing three circles as follows;

'Construction of (a, b, d)-triple which holds $a d-b^{2}=1$ by three circles'

1. Take any point P on the upper half-plane.
2. Draw circle C_{1} tangent to the x-axis at $(-1,0)$ and passing through P.
3. Draw circle C_{2} tangent to the x-axis at $(+1,0)$ and passing through P.
4. Draw circle C_{3} passing through $(-1,0),(+1,0)$, and P.
5. Let a, d, b be the y-coordinate of the center of three circles C_{1}, C_{2}, C_{3}, respectively. Then, the (a, b, d)-triple satisfies $a d-b^{2}=1$.

For example, if $P=(1,2)$, then the three circles are given by

$$
C_{1}:(x+1)^{2}+(y-2)^{2}=2^{2}, C_{2}:(x-1)^{2}+(y-1)^{2}=1^{2}, C_{3}: x^{2}+(y-1)^{2}=2 .
$$

Hence, $P=(1,2) \in H$ corresponds to $\left(\begin{array}{cc}2 & 1 \\ 1 & 1\end{array}\right) \in S y m^{+}$as shown in Figure 3.

4 Hopf fibrations of $S L(2, \mathbb{R})$

At the end of this paper, let us go back to the map π_{0} and the three-dimensional model in Section 2. For $K(\theta)=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \in S O(2)$, let us consider the left and right translations in $S L(2, \mathbb{R})$ defined by

$$
K_{L}(\theta)(A)=K(\theta) A, \quad K_{R}(\theta)(A)=A K(\theta)
$$

for $A \in S L(2, \mathbb{R})$. Then, by Equations (1) and (2) in Section 2,

$$
\pi_{0} \circ K_{L}(\theta) \circ \pi_{0}^{-1}(u, v)=\left(e^{i \theta} u, e^{i \theta} v\right), \pi_{0} \circ K_{R}(\theta) \circ \pi_{0}^{-1}(u, v)=\left(e^{i \theta} u, e^{-i \theta} v\right) .
$$

Therefore, the orbits under these translations are great circles in S^{3}. The stereographic projection maps circles to circles, and hence, these two orbits are two different circles on the same torus as shown in Figures 4 and 5. These figures illustrate clearly the noncommutativity of the group structure

Figure 4: Left and right translations.

Figure 5: Side view of Figure 4.
of $S L(2, \mathbb{R})$. Furthermore, Figures 4 and 5 show that $S L(2, \mathbb{R})$ is the product of $S y m^{+}$and $S O(2)$, because every S^{1} fiber of the left translation meets at one point in $S y m^{+}$. Since $S y m^{+}$may be regarded as the Poincaré disk with hyperbolic metric which isometric to the upper half-plane H, the well-known fact $H=S L(2, \mathbb{R}) / S O(2)$ can now be visualized in the three-dimensional model.

5 Closing remarks

In this paper, we have proposed a three-dimensional model of $S L(2, \mathbb{R})$. The set of symmetric matrices corresponds to the hyperbolic plane H, which entails the well-known fact:

$$
\begin{equation*}
H=S L(2, \mathbb{R}) / S O(2) \tag{4}
\end{equation*}
$$

In general, Equation (4) is derived by the following algebraic approach: $S L(2, \mathbb{R})$ acts on the homogeneous space H as the Möbius transformation, and the point stabilizer of $i \in H$ is $S O(2)$. In this sense, the three-dimensional model gives us another approach for Equation (4). Noncommutativity of the group structure of $S L(2, \mathbb{R})$ is also visualized. In this way, the three-dimensional model is useful for understanding the group $S L(2, \mathbb{R})$. The complete visualization of the group structure forms part of our future work.

References

[1] V. Bargmann, Irreducible unitary representations of the Lorentz group, Annals of Mathematics Vol. 48, No. 3 (1947), pp. 568-640.
[2] A. F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, 1983.
[3] M. Berger, Geometry I, Springer-Verlag, 1987.
[4] M. Berger, Geometry II, Springer-Verlag, 1987.
[5] Harish-Chandra, Plancherel formula for the 2×2 real unimodular group, Proc. Natl. Acad. Sci. U.S.A., Vol. 38, No. 4 (1952), pp. 337-342.
[6] G. Jennings, Modern geometry with applications, Springer-Verlag, 1994.
[7] S. Lang, $S L_{2}(\mathbf{R})$, Springer-Verlag, 1985.
[8] Y. Maeda, Active Learning with Dynamic Geometry Software, ICCSA 2017, Part IV, LNCS 10407 (2017), pp. 228-239.
[9] E. Molnár, The projective interpretation of the eight 3-dimensional homogenuouse geometries, Beiträge, Algebra Geom. Vol. 38 (1997), pp. 261-288.
[10] W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. Vol. 6, No. 3 (1982), pp. 357-381.

